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Finsler and Kaluza-Klein Gauge Theories 
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A comparison of Kaluza-Klein and Finsler-type gauge theories is sketched. It 
is shown that the two can be related by a mapping between fiber spaces which 
is equivalent to a transformation from one representation of the gauge group to 
another. The Finsler theory lends itself to an interpretation of the mapping 
operators as being geometrically similar to Yang-Mills potentials. The equations 
of motion in this theory contain fields which are comparable to connections 
instead of curvatures. This gives a new geometrical framework for unified field 
theories. 

On an m - d i m e n s i o n a l  d i f ferent iable  base  m a n i f o l d  M which  has local  
coo rd ina t e s  x ~ (Greek  ind ices  1 , . . . ,  m) two different  types  of  fiber s t ructure  
I I -~ (x )  over  a po in t  x might  be cons idered .  

The  first is a genera l  n - d i m e n s i o n a l  fiber wi th  coord ina tes  z i (La t in  

indices  1 , . . . ,  n). This is somet imes  ca l led  an  " in t e rna l "  space  [as, for  
example ,  in I k e d a  (1985, 1987)], bu t  of ten s imply  the  fiber subspace  o f  the 
fiber bund le .  A g roup  G is a s sumed  to act on the  fiber and  p r o d u c e  what  
physic is ts  call  gauge  t r ans fo rma t ions ,  tha t  is, t r ans fo rmat ions  o f  the  sub- 
space  wh ich  can  be expressed  loca l ly  in terms o f  the  z coord ina tes .  I t  is 

�9 welt k n o w n  that  this  geome t ry  can be used to m o d e l  K a l u z a - K l e i n  theor ies .  
There  are n u m e r o u s  examples  o f  r igorous  ma thema t i ca l  t rea tments  o f  this 
type  o f  theory ,  inc lud ing  Cho  (1975) and  N a s h  and  Sen (1983). 

The  second  type  o f  s t ructure  is less well  known,  bu t  has been  a r o u n d  
for  a long  t ime.  I t  can  be u n d e r s t o o d  as ar is ing f rom a special  case o f  the  
first where  the  fiber has  d i m e n s i o n  n = m of  the  base  space and  the local  
f iber coo rd ina t e s  ( l abe led  y~)  are  t aken  to be  re la ted  to a velocity.  These  
are theor ies  o f  F ins le r  type  (Asanov ,  1985, 1987, 1990; Mi ron  and  Anas tas ie i ,  
1987). The  fiber subspace  is also subjec t  to g roups  o f  t r ans format ions .  The  
F ins le r - type  theor ies  have been  genera l i zed  cons ide rab ly  in recent  years  
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and do not necessarily correspond to traditional Finsler spaces, but still 
have a similar geometric approach (Kawaguchi and Miron, 1989b). 

One purpose of this paper is to show that the Kaluza-Klein and Finsler 
structures are not necessarily alternative, but can exist simultaneously as 
complementary fiber spaces which define two different representations of 
the transformation group G. The projection or mapping from one fiber 
space to the other is accomplished by operators e~. 

A second purpose is to outline how the Finsler approach facilitates a 
different way of looking at the physical interpretation of gauge geometry. 
For example, the connections N can correspond to fields rather than 
potentials as they do in Kaluza-Klein theory. The potentials can be related 
to the mapping operators themselves. 

The discussion is begun by considering a change of  the local canonical 
coordinates (x ~', z ~) on the total space of the bundle. This will be distin- 
guished below from a pure gauge transformation. The coordinate transfor- 
mation is given by 

x '~ = x ' ~ ( x l , . . . ,  xr") ,  rank[lX*~[[ = m (1) 

z 'k = M.*,kz ~, r a n k l l M * ~ l [  = n (2) 

where X~ *~ = Ox'~'/Ox ~. 
Equation (2) distinguishes the present theory from that developed by 

Asanov (1985, 1987), in which z is scalar under the x transformations. 
The Jacobian matrix of this coordinate transformation in the (m + n)- 

dimensional bundle space is 

0M?i  0 
z 'k M ~  

The natural basis of the module of the tangent vector fields in the 
general bundle space is (O/Ox",  0/0z~). The O/Ox ~ are assumed holonomic, 
but [O/Oz ~, O/Oz j]  = f ~ ( O / o z k ) .  The f ' s  are structure constants for G in the 
representation defined by the z fiber. The dual basis is ( d x  ~, dz~). Then (1) 
and (2) correspond to the tangent space transformations 

M s 0 _ .  o o k Z,k _0 0 ; 0 (3) 
OX,~ = X , ~X~- } -~X~  OZi , oz,k  -- M k OZ ~ 

OM*~ k 
d x ' "  = X * . "  dx  ~, dz  'k = M*~ k dz '  + z ~ dx  ~ (4) 

Ox ~ 

with Y ~x~*~ = (3~ and iIAFi AA[~J - -  i 
- - a * - z ,  IT '~j2T'a  k - -  ~ k "  

The discussion here tracks closely that of Miron and Anastasiei (1987) 
and others, 
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It is desirable to have a tangent basis which transforms covariantly 
under  the coordinate transformation. So the basis (6/~3x ~, O/Oz ~) is defined 
with 

6 O O ~d k 

3 x "  Ox ~ - ~ ' ~ 3 z  k 

where N~ is the 
required covariance is achieved if N transforms according to 

*'i _ ~  ztJ N ;  = l~d*i l~'rk v~*"k  M*ki  O 
~"J k 1 ,* txzx v OX ~ 

A corresponding dual basis is (dx  ~, 6z k) with 

az k = dz k + N ~  dx  ~ 

connection, also called the nonlinear connection. The 

(5) 

(6) 

The Finsler-type space parallels the above development except that the 
fiber coordinate is y~ instead of z i, where y"  is a tangent vector component  
in a fiber space with n = m. In most Finsler treatments the case where 

y~  = d x ~ / d s  (7) 

is taken. The increment ds is associated with an arc length of a timelike 
line element of  the base space. 

The immediate result of  (7), considering (4), is that the matrix M can 
be identified with X so that 

y '~ -= X*~*y ~ (8) 

and (3)-(5) hold with M replaced by X. See, for example, Miron and 
Anastasiei (1987). 

Metrics g ~  and gik can be defined on the base space and the fiber 
space, respectively. 

The bundle line element is 

d S  2 = g~v dx  ~ dx~ + gik 8z  i 6z  k 

This metric is block diagonal in m + n dimensions and is scalar under 
the coordinate t ransformation when 

; - -  ~t v ; i k 
g ~  - X ~ X t 3 & , , . ,  g~m = M a M m g i k  

The usual procedure in Kaluza-Klein  theories is to take the natural 
basis ( d x  ~*, dz  ~) instead of the contravariant basis  (dx  ~, 6z ~) so that the 
m + n metric is the familiar 

i k i 
gt*~" + N ~ N ~ , g i k  N u g i k  

k 
N ,, g ik gik 
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as is easily derived using (6). The m • m block is then the metric on which 
the Kaluza-Kle in  model is built. 

Instead of  using the nonlinear connection itself in an equation of 
motion, a new set of  connection coefficients is derived which involves partial 

~ k  k k k i j derivatives of  N and the Yang-Mills  form ~*.~ = O.N~-O~N.  + f i j N . N .  
for N independent  of  z (Cho, 1975). 

The new connections are actually similar to curvatures and the equation 
of  motion is comparable  to an equation of geodesic deviation. 

This is to be contrasted with some Finsler-type theories where the 
equation of  motion is the geodesic equation for the system, which is 

8y" dy"+ dx ~ 
= N~ - ~ s  = 0 (9) ~s ds 

The connection is N itself. A quantity like ~ k  is then only a curvature. 
In the usual physical interpretation of  the Finsler quantities, N is 

identified as a potential and f f  as a field in deference to the Kaluza-Kle in  
tradition. However, it will be seen that a different physical interpretation 
is possible in the Finsler case whereby a potential is part  of  the metric, but 
not geometrically similar to the nonlinear connection N. It is a field F that 
will be related to N and this field will appear  in an appropriate place in 
an equation of motion like (9), which is a geodesic equation. 

Usually, the Finsler and Kaluza-Kle in  theories have been studied 
separately and there has been little exploration of  their relation to each 
other. A notable exception is the work of Ikeda (1985, 1987, 1989), who 
has developed some of  the possibilities of  a mapping  

y" = e~z k (10) 

Asanov (1985) has used a similar mapping with m = n. The mapping operator  
e(x) is an m-bein for m--< n, but not for m > n. The general concept of  
vierbein or tetrad mappings is very old. However,  in nearly every case 
previously considered the mapping  is from the fiber space to the base space 
instead of  between fiber spaces as described here. A classic example of  
previous approaches is Kibble (1961). 

In this type of mapping three distinct cases have to be considered, 
m < n, m = n, and m > n. In a manner  somewhat similar to that of Bergmann 
(1983), although for a different geometrical context, the case of  m < n can 
be thought of  as an embedding of,the m-space in the n-space and the case 
m > n can be thought of  as a projection of  the n-space onto the m-space. 

It will be seen that there is a case with m = n which can correspond 
to the Yang-Mills  SU(2)  field and an example of  the case m > n which 
can produce a theory corresponding to U(1) or electromagnetism. These 
are the two examples which will be examined in some detail. 
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For the m < n case, in which the dimension of  the fiber is greater than 
that of the base space, a complete set of basis vectors for the fiber could 

ks  include m e ,  s, but must also include n -  m additional vectors. The e 
operators satisfy ~ k ~ ~ eke~= ~v, but e~ei r 8~. 

The fiber transformations (2) and (8) are related by 

x *~-  ~"~*k~i M U  ~ -  ok~"+ ~k x'*"o~ 

so that M~ ~k= 6) when X *~= 3~. 
For the m = n case, 

~k~'i e~,, M*, k 

since ~ k ~ k eke~ ---= 6~ and e.ei  ~ 6~. 
For the case of m > n, m - n  additional basis vectors are required 

beyond the n ek S, since e~ e~ # ~ and e~,e~ - 6~. The transformations are 
related by 

X * ~ ' - - 6 ~ - e k e  ~ .  j k ~ ,  e~X~  e i 

The case of m = n, which is the simplest, is now considered in more 
detail. The mapping (10) is a linear change of basis for representations of 
the fiber group. Under this change of basis the structure constants of the 
group transform as third-rank tensors (Gilmore, 1974) so the properties of 
the Lie algebra of the group are preserved. 

Under this mapping, 6y ~ =  e ~ 6 z  k and the nonlinear connection in the 
y-bundle is ~ -  " k N ~ , - e k N ~ , .  

The line element of the bundle is 

d S  2 = g~,~ d x  ~" d x  ~ + h,~ ~3y" ~y  ~ 

This is scalar under the m-bein mapping if 

h.~ i k = g i k e ~ e  

The m x m block in the bundle metric for natural tangent space bases 
with the y fiber is g,~ + h ~ t ~ N , N ~ .  So a Kaluza-Klein theory can be built 
from this metric of Finsler type. However, the main concern here is with 
covariant bases and in this case the base metric is unchanged by the m-bein 
mapping. The bundle metric is still block diagonal with elements g,~ and h,~. 

While the metric g ~  is unchanged by the m-bein mapping, it is affected 
in the Finsler case by the gauge transformations themselves. It will be seen 
that a new type of theory can be produced from these gauge-transformed 
metrics. 

In order to demonstrate this, consider gauge transformations which 
are transformations of the fiber coordinates only. The transformation group 
is initially understood to act on the internal or fiber space and not directly 
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on the base space coordinates. They are restricted for convenience to those 
which can be expressed in the form 

~-k=Z*kz i  (11) 

where the matrix Z*  is n • n and nonsingular. This can be viewed as a 
special case of  the transformations (1) and (2) with Xv*~-- 8~ ~ and M *k = 
Z *k. This is sometimes called a pure gauge transformation. 

Due to the m-bein mapping (10) to the y fiber the corresponding gauge 
transformations in the y space are 

f f /x  = ~ / z 7 $ k  i ~k'~i e~y = Y*~y~ 

which defines the nonsingular matrix Y*. For a general vector component  
A i, fi,~ = e ~ Z * k A  i v * ~ , , ~ a  i = --~ ~i ~1, that is, the e mapping and the gauge transfor- 
mations commute. 

A key requirement of  Finsler theory is that the norm or length of the 
y vector is preserved under  the gauge transformation: 

~o~9~ y ~ = g ~ y ~  y~ 

which implies that the base space metric transforms as 

- ~ ~ * ~  ~ ~ ( 1 2 )  g ~ = g ~ Y ~ Y ~ ,  Y~ Y ~ = 8 ~  

This transformation of the base metric is equivalent to requiring that 
the Finsler metric function F2(x,  y )  = g~t~y~y ~ be a scalar under the gauge 
transformation. A number  of  other implications of  this type of  gauge are 
discussed in Beil (1992). The main point here is that the gauge transformation 
induces a new form for the base space metric, but does not directly involve 
a t ransformation of the base space coordinates. 

The new metric could, in general, be a velocity or y-dependent  metric. 
In the traditional Finsler theory a metric f ~  =�89 Oy ~ is used to 
compute connections and curvatures. In order to introduce explicitly the y 
dependence,  the operator e could be dependent  on both x and y, but this 
case will not be considered here. 

The gauge transformations obviously act on the y and z fiber metrics 
h ~  and gik. These metrics have been investigated by Asanov and others 
(Asanov, 1985, 1987; Asanov et al., 1988). The Finsler condition (12) actually 
implies what is sometimes called a "soldering" of the fiber space onto the 
base space. There is a soldering form 0 which, for example, would give 

t3 g,~ = O , O ~ h ~ .  See, among others, Ivanenko and Sardanashvily (1983) for 
a discussion of this. A different point of  view, which involves an almost 
Hermit ian structure relating the fiber and base metrics, is given by 
Kawaguchi  and Miron (1989a, b). The soldering provides a means for the 
action of a pure gauge transformation to be imposed back on space-time. 
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The Finsler f ramework generally offers a means to couple the fiber or gauge 
space with the base space (space-time). Such a coupling is expected to be 
a constituent of a gauge theory of gravitation (Ivanenko and Sardanashvily, 
1983). 

It is convenient to take the form of the gauge transformation matrix 
in (11) to be 

(13) 

The n x n matrix co~ contains the parameters of  the gauge transforma- 
tion group. For example,  the number  of  parameters would be n= for Gl(n, r). 
For interesting physical cases the number  of  independent parameters would 
be reduced, say, to three for w~ as a 4 x 4 representation of the quatemion 
group Gl(1, q) ~ SU(2 ,  c). This would give a familiar Yang-Mills case. 

The inverse of (13) is 

with tp defined by 

to produce Z * k Z }  = 6~. 

z j  = + 

i ] / j •  i - -  ~ i  k -1- wj -e tgkWj -- 0 

Under  the m-bein mapping,  

Y * ~ = 6 ~ + e ~ o ~ e ' ~ ,  Y~=6~+e~tp~ei~ (14) 

The new metric, from (12), is 

- ~ j k r j k - -  ~ - - j  k ~ . i  m ( 1 5 )  g ~  = g ~ +  g~e j  t~ke~ + g ~ e  j ~ke~ ~-g,~ej ~ke~ei  ~,~e~ 

A metric-like quantity ejg can be defined by 

eji = g ~ e f  e~, e~ei~ = g~e~ (16) 

When (16) is used in (15), 
- j j i k m k m g ~  = g ~  + ( 2 e~,~tP k + ej~tp gtpm)e ~e~ = g,~ + Uk~e ~e~ (17) 

where Uk,~ has the form of a metric. 
k m Equation (17) has a similar form to the general metric g ~  + gk,,N~,N~ 

which characterizes Kaluza-Kle in  theory. Here, however, the m-bein or e 
operator  appears  in place of  the nonlinear connection N as representing 
the Yang-Mills  potential. Once the metric (17) is given, the connections 
and curvatures can be computed according to standard procedures. The 
fields involve partial derivatives of the e operators and are geometrically 
similar to the connections N. The fields then appear  in the geodesic 
equations. 

The m = n case could be developed further, but at this point it is more 
instructive to turn to a case with m > n. 
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For m > n the mapping (10) is a projection of  the n-space onto the 
ix k tz m-space. The operators e~ are no longer m-beins, since eke~# ~ .  They 

will simply be called projection operators. 
With some general vector q" in the m-space can be associated a vector 

qk in the n-space, 

q k = e k q "  

However, for m > n the projection does not uniquely determine q" 
since for qk = 0 the equations e~q ~ = 0 will have m - n linearly independent 
solutions for q ' .  

This implies that m - n  new basis vectors for the m-space must be 
defined in addition to the e~. 

These basis vectors are taken to be q~ with 

k tz 
e , q e  = O, q~,qO = 8Q 

and the index P = 1 , . . . ,  m - n. If  the direction in space-time defined by 
any e~ or q~ is spacelike, then that vector would have a pure imaginary 
factor. This slight complication will be omitted here. 

The discussion here is formally similar to that of  Rosen and Tauber 
(1984), although the geometric context is different. It is not difficult to show, 
as they have done, that 

6~ = e~e~+ q~,q~ 

This means that the gauge transformation matrices can be expressed as 

y * . _ . . 7 * k ~ i  . P 
- -  ~ k , ~ _ , i  ~ + q p q ~  (18) 

SO that Y~*" = 6~ for Z*~ k = (3 k. 

Similarly, 
y ~ =  ~ j ,, ~ P e j Z m e ~  +qpq~  

which gives Y*" Y~ = 6~. 
For gauge transformations like (13), the immediate result is (14) again, 

so that (15)-(17) have exactly the same appearance. 
A simple example of this type of gauge transformation is a one- 

dimensional representation of  the Abelian group U(1). The transformation 
matrix (13) becomes the single element Z* = 1 + to. This is not the compact 
representation which is usually considered. 

For m = 4 the space is taken as Minkowskian, so that 

~__ ~ P 6~, -- e~e~ + qpq~, 

with P = 1, 2, 3 and the q~ all spacelike. The e" are 4-vectors in a timelike 
direction. 
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The transformation matrices are, from (18), 

,a P Y * "  = e" ev + e"we~ + qpq~ = 6~ + e%)e~ 

Y ~ = 6 ~ + e ~ O e ~ ,  1 + ~ = ( 1 + w )  ~ (19) 

It is assumed that the initial base space metric has the Lorentz form 
~ ,  so that the gauge transformation is from a local inertial space to one 
which expresses the dynamics of the system. So (17) is 

~ ,  = r /~ + (26 + O2)e~e~ 

The transformation can be simplified a bit by reparametrization to a 
parameter /"  defined by 1 + w = (1 +X) -~/2, which gives 

~,~ = ~?~ + xe~e~ 

This is the same form as the metric 

~,.~ = "q.. + k B . B .  (20) 

The metric class (20) has been studied extensively (Beil, 1987, 1989, 
1992; Kawaguchi and Miron, 1989a, b, 1991; Miron and Radivoiovici- 
Tatoiu, 1989; Asanov and Kawaguchi, 1990). It has been shown to produce 
an equation of motion which is just the Lorentz charged particle equation, 
where B.  is related to the electromagnetic potential by 

B,~ = a .  + oA/Ox" (21) 

The Lorentz equation comes from the geodesic equation (9), where the 
connection N~ is computed from the metric (20). This is possible whenever 
a "metric" condition is imposed such that the derivative of the metric which 
is covariant under the x-coordinate transformation is assumed to be zero. 
This result is derived in numerous discussions of Finsler space and also 
parallels any general relativistic derivation of the Christottel connection. 
The connections thus involve partial derivatives of the B vectors (or the e 
vectors) and are related to the electromagnetic field F ~ .  This is worked 
out in detail in Bell (1992). The connection N is equal to F plus a term 
which becomes zero in the equation of motion. 

The gauge relation (21) is not the same as the gauge transformation 
imposed on the potential components A~ by (19). The latter is given by 

4 ,  = A~ + tp(e~A.~)e~ 

If there exists a scalar function ~?(x) such that O,?/Ox ~ = th(e~A~)e~,  
then the field components F~ .=  3 A ~ / 6 x " - r 3 A ~ / 6 x  ~ are invariant under 
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(19). The field form itself is invariant in any case. Since F ~  is also invariant 
under (21), this implies F ~  = OB~/Ox ~ - O B J O x  ~. 

There are several possible forms for ~7. These are related to a theory 
of "natural"  gauges (Beil, 1991) and will be discussed in subsequent work. 

A parenthetical remark should also be made to the effect that the 
projection vector e '~ does not have to be timelike. Gauge transformations 
can be defined for e spacelike or even null. In general, for the Abelian 
group, the matrices are the same as (19) except that 1+~0= 
[ 1 + (e ~e~ - 1) w ]/(1 + e ~e~w). The physical significance of these transforma- 
tions remains to be developed. 

The differences between the Kaluza-Klein and Finsler types of theory 
can be summarized as follows: 

In Kaluza-Klein theories the Yang-Mills potentials B are identified 
with the connections N, the fields become curvatures which are computed 
in terms of the partial derivatives of these potentials (and any structure 
constants), and the equations of motion are comparable to equations of 
geodesic deviation. 

In the traditional Finsler theory N is also identified as a potential, but 
is sometimes used in a geodesic equation like (9) interpreted as the equation 
of motion. A quantity like ~ is usually taken to be a curvature. 

In the present interpretation of Finsler theory the Yang-Mills potentials 
B are identified with the m-beins or projection operators e, and the fields 
F are gauge invariant, but are geometrically related to the connections N. 
The equations of motion are comparable to the geodesic equations. 
Specifically, here the operators e are not identified with the connections as 
in the work of Ikeda and in numerous other gauge gravitation theories. 
This has the advantage that the type of mathematical problem pointed out 
by Ivanenko and Sardanashvily (1983) related to the identification of  the 
tetrads with the connections can be avoided. Here the gauge potentials are 
put on the same geometrical footing as gravitational tetrad potentials. 

It should be understood that mathematically what is here called 
"Kaluza-Kle in"  and "Finsler" are two sides of the same coin. They are 
related through the e mapping and therefore have similar geometric prop- 
erties. The difference is that the Finsler theory in the covariant basis 
points to a different physical interpretation, as outlined in the preceding 
paragraphs. 

So the Finsler approach offers a new way of producing unified field 
theories. A novel theory of  this type, in which electromagnetism as a U(1) 
gauge is incorporated directly into the space-time metric, has been given 
above and in previous work (Beil, 1987, 1989, 1991, 1992). The framework 
for an SU(2) theory was started above. Theories of SU(3) and other gauges 
can clearly follow along the lines suggested. 
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